В n измерениях определения остаются одними и теми же, за исключением того, что первоначальное отношение соточечности должно относиться к л +1 фигурам.
«Точки» определяются как классы событий с помощью вышеприведенных методов и с молчаливым предположением, что каждое событие «занимает» более или менее овальную площадь.
«События» должны пониматься в этом обсуждении как неопределенный сырой материал, из которого должны быть получены геометрические определения. В другом контексте нам может понадобиться исследовать то, что понимается под «событиями», и мы сможем тогда продолжать наш анализ дальше, а сейчас мы рассматриваем многообразие «событий» с их пространственными и временными отношениями как эмпирические данные.
Способ, с помощью которого пространственный порядок вытекает из наших предположений, является несколько сложным. Однако здесь я ничего не буду говорить об этом, так как разбирал этот вопрос в книге «Анализ материи», где я дал также и гораздо более полный разбор определения «точек» (главы 28 и 29).
Кое-что следует сказать о метрических свойствах пространства. Астрономы в своих популярных книгах поражают нам прежде всего рассказами о том, как безмерно далеко находятся от нас многие туманности, а затем утверждениями, что вселенная в конце концов конечна, будучи трехмерным аналогом поверхности сферы. Но в своих менее популярных книгах они говорят, что измерение носит только условный характер и что мы могли бы, если бы захотели, принять такие условия, которые привели бы к тому, что самые удаленные из известных нам туманностей северного полушария оказались бы к нам ближе, чем туманности противоположного полушария. Если это так, то обширность вселенной является не фактом, а результатом условий. Я думаю, что это верно только отчасти, но выделить элемент условности в измерении это отнюдь не легкое дело. Прежде чем попытаться сделать это, следует кое-что сказать об измерении в его элементарных формах.
Измерение расстояния даже до удаленных туманностей строится на основе измерений расстояний на поверхности Земли, а наземные измерения начинаются с допущения, что некоторые тела могут рассматриваться как приблизительно жесткие (rigid). Если вы измеряете величину вашей комнаты, то вы исходите из того, что ваша измерительная линейка не становится заметно длиннее или короче в процессе измерения. Английская военно-топографическая съемка определяет большинство расстояний посредством триангуляции, но этот процесс требует, чтобы по крайней мере одно расстояние было измерено непосредственно. Действительно, основная линия, избранная на Солсберийской равнине, была тщательно измерена элементарным способом, каким мы измеряем величину нашей комнаты: цепь, которую можно принять по определению за единицу длины, повторно укладывалась на поверхности земли вдоль линии, которая была прямой, насколько это было возможно. Когда эта длина была определена непосредственно, остальное измерение производилось посредством измерения углов и соответствующих вычислений: диаметр Земли, расстояние до Солнца и Луны и даже расстояния до ближайших неподвижных звезд могут быть определены без какого-либо дальнейшего непосредственного измерения длин.
Но если этот процесс исследовать тщательно, то оказывается, что он полон трудностей. Допущение, что тело «жестко», не имеет определенного смысла, пока мы не установим метрики, позволяющей нам сравнить длины и углы в один момент времени с длинами и углами в другой момент времени, так как «жесткое» тело не изменяет ни своей формы, ни величины. Но тогда мы нуждаемся в определении «прямой линии», так как все наши результаты будут неверными, если основная линия на Солсберийской равнине и линии, употребляемые в процессе триангуляции, не прямые. Следовательно, оказывается, что измерение предполагает геометрию (позволяющую определить «прямую линию») и достаточные познания в физике, дающей основания для рассмотрения некоторых тел приблизительно жесткими и для сравнения расстояний, измеренных в один момент времени, с измеренными в другой момент. Связанные с этим затруднения трудно преодолимы, но прикрываются допущениями, принятыми в соответствии с обыденным здравым смыслом.
Обыденный здравый смысл допускает, грубо говоря, что тело является жестким, если оно выглядит жестким. Рыба угорь не выглядит жесткой, а стальной стержень выглядит таковым. С другой стороны, камешек на дне журчащего ручья может казаться извивающимся, как угорь, но с точки зрения обыденного здравого смысла этот камешек является тем не менее жестким, потому что осязание считается с этой точки зрения более надежным, чем зрение, а когда вы переходите ручей вброд босиком, то вы именно осязаете, что камешек жесткий. Рассуждая таким образом, следует сказать, что обыденный здравый смысл является как бы ньютонианцем: он убежден, что в каждый момент тело обладает внутренне присущей ему определенной формой и величиной, такой же или не такой, как его форма и величина в другой момент. Если пространство абсолютно, то это убеждение имеет какой-то смысл, но без абсолютного пространства оно сразу же теряет всякий смысл. Должно, однако, существовать такое истолкование физики, которое объясняло бы весьма значительные успехи, проистекающие из допущений обыденного здравого смысла.
Как и в измерении времени, здесь действуют три фактора: во-первых, допущение, доступное исправлению; во-вторых, физические законы, которые при этом допущении оказываются приблизительно верными; в-третьих, изменение допущения, делающее физические законы более точными. Если вы допустите, что стальной стержень, выглядящий зрительно и осязательно жестким, сохраняет свою длину неизменной, то вы найдете, что расстояние от Лондона до Эдинбурга, диаметр Земли и расстояние до Сириуса почти постоянны, но немного короче при теплой погоде, чем при холодной. Тогда окажется, что проще сказать, что ваш стальной стержень при нагревании расширяется, особенно когда вы найдете, что это позволяет вам рассматривать вышеупомянутые расстояния как почти постоянные, и, далее, сказать, что вы видите, как ртуть в термометре занимает больше пространства в теплую погоду. Вы, следовательно, допускаете, что жесткие по видимости тела расширяются от теплоты, и вы допускаете это для того, чтобы упростить формулировку физических законов.
Попробуем выяснить, что в этом процессе является условным и что оказывается физическим фактом. Физическим фактом является то, что если вы возьмете два стальных стержня одинаковой комнатной температуры и по видимости одинаковой длины и нагреете один из них на огне, а другой положите в снег, то, когда вы после сравните их, окажется, что тот, который был на огне, будет выглядеть несколько длиннее, чем тот, который был в снегу, но когда они оба снова будут иметь температуру вашей комнаты, эта разница исчезнет. Я здесь исхожу из допущения донаучных методов определения температуры: горячим или холодным телом считаю то, что горячо или холодно на осязание. В результате таких грубых донаучных наблюдений мы решаем, что термометр дает точное измерение того, что приблизительно измеряется нашими осязательными ощущениями тепла и холода; мы можем теперь в качестве физиков игнорировать эти осязательные ощущения и обращаться только к термометру. Было бы тавтологией говорить, что ртуть в моем термометре поднимается вместе с повышением температуры, существенным же фактом является то, что все другие термометры ведут себя подобным же образом. Этот факт устанавливает сходство между поведением моего термометра и поведением других тел.
Но элемент условности не вполне таков, каким я его установил. Я не исхожу из предположения, что мой термометр правилен по определению; наоборот, всеми признается, что каждый действующий термометр более или менее неточен. Идеальный термометр, к которому действующие термометры только приближаются, есть такой, который, будучи принят за точный, делает общий закон расширения тел при повышении их температуры настолько точным, насколько это возможно. Эмпирическим фактом является то, что благодаря соблюдению определенных правил при изготовлении термометров мы можем делать их все более и более приближающимися к идеальному термометру, и именно этот факт оправдывает концепцию температуры как величины, имеющей для данного тела в данное время некоторое точное значение, которое может слегка отклоняться от значения, даваемого всяким действующим термометром.